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Abstract

The main goals of the MONERGY project are:

• To increase the inter-regional knowledge of technologies and solu-
tions in the field of Smart Grids.

• To promote the research and the innovation in ICT by targeting
solutions that have an impact on the reduction of energy consump-
tion within houses by considering the peculiarities of the Friuli
Venezia-Giulia (FVG) and Carinthia (CAR) regions.

Within MONERGY, the objectives of WP5 (entitled Validation of Us-
age Models and Energy Saving Analysis) are:

• To test the functionalities of the hardware validation platform re-
sulting from the research results in WP4

• To experimentally validate the use of the monitoring system in real-
life scenarios, by means of a measurement campaign in households
in CAR and FVG

• To analyze measurements in order observe commonalities and dif-
ferences between the regions

• To formulate policies that considers such peculiarities to improve
energy efficiency

This deliverable presents the outcome of the work carried out within
WP5. In particular, it reports the outcome of the measurement campaign
carried out in the regions to monitor real-life scenarios. The GREEND
dataset resulting from such research effort is presented and analyzed
to gain further insights into energy usage behavior. Specific policies
aiming at improving energy efficiency in households are consequently
formulated and implemented in an automatic system.
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Executive summary

This deliverable includes the results of the research carried out within
WP5. In particular, the following topics are addressed.

• Monitoring campaign and GREEND dataset - The MONERGY
home energy management system (HEMS) has been installed in 8
households in Friuli Venezia Giulia and in Carinthia. Within each
household, the power consumption of 9 electrical appliances is
monitored with intervals of one second. The monitoring campaign
and the dataset that has been obtained are presented.

• Validation and analysis of results - The GREEND dataset is an-
alyzed to gain further insights into energy consumption behavior
in the regions. In particular, the dataset has been used in WP5 to
derive usage models of energy consumption and analyze analogies
and differences between energy consumption patterns in Italy and
Austria.

• Policies for energy efficiency - As main outcome of the data anal-
ysis policies improving energy efficiency are formulated. The anal-
ysis is then implemented in an open-source energy management
system to extend the benefits to other householders.
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Section 1

Introduction

The deployment of renewable energy generators, such as photovoltaic
and wind turbines, as well as the diffusion of electric vehicles, yields
instability in the offer and demand of energy in the grid. In order to
control the amount of energy required by their customers, utilities are
getting progressively involved in demand-side management programs.
Accordingly, consumers can shift consumption of particularly energy-
demanding appliances (e.g., electric vehicles) to off-peak periods. These
programs include the promotion of efficiency and energy conservation,
by raising the awareness of customers towards the footprint of their
daily activities. From a technical point of view, to effectively implement
these programs, it is necessary to collect consumption information and
process them in a way that most of the benefits can be made.

Some information on the energy consumption is available in the liter-
ature as the result of past measurement campaigns. An overview of such
prior works is presented in [MEE+14]. Basically, [MEE+14] reveals that
the available information present some strong limitations. Prior mea-
surement campaigns target a low number of houses/devices, provide
measurements with a low sampling rate, or they perform monitoring for
a limited period of time. Within the MONERGY project we performed a
massive monitoring campaign aimed to collect the information on the en-
ergy consumption of the Carinthia (CAR) and Friuli Venezia Giulia (FVG)
regions. The large number of monitored houses, 8, the fine monitoring
accuracy, one measure per second, the large number of monitored de-
vices per site, 9, and the long duration of the monitoring period, 1 year,
put the MONERGY database among the most complete and accurate re-
sults presented so far.

The MONERGY campaign is a part of the last WP of the project, and
it follows from the research activity carried out within the WPs 2, 3 and
4. In the former two WPs, we have reviewed the existent monitoring so-
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lutions pointing out the limits, especially in connectivity/coverage terms,
and we have studied the impact of the user interface in presenting the
monitoring results. Furthermore, we have proposed, designed and vali-
dated a) practical solutions that overcome the existent connectivity lim-
itations and that are based on hybrid communication schemes where
both power line communication and wireless technologies are deployed,
and b) a graphical interface that implements the suggestions from users
collected by the MONERGY survey. In WP4, we have developed cus-
tom monitoring platforms and we have setup the solution that we have
developed for monitoring purposes. The practical consequence was the
deployment of the developed HEMS into selected households in CAR and
FVG, in which we monitored individual devices. The resulting dataset is
GREEND. GREEND has been publicly released and it has been used in
WP5 to gain deeper insights into energy usage behavior in the regions.

This deliverable includes the results of the research carried out
within WP5 (entitled Validation and Analysis of Results), which concerns
the analysis of energy consumption data gathered in the regions, in or-
der to derive usage models and formulate policies towards an increased
efficiency. In particular, the analysis revealead that savings up to 34%
are possible without significant impact on the user lifestyle. To extend
the benefits of the data analysis and the formulated policies, we intro-
duce a web-based energy management system and we release it for open
use.

The deliverable is organized as follows. Section 2 overviews the mea-
surement campaign and its outcome, the GREEND dataset. An extensive
analysis is then provided and discussed in Section 3. Main outcome was
the formulation of energy efficiency policies, which are reported and
implemented in Section 4. Finally, the deliverable is concluded in Sec-
tion 5.

2



Section 2

The measurement campaign

One of the main activities of the MONERGY project is the conduction of
a measurement campaign to observe actual energy use in the regions.
This section reports criticalities encountered during the campaign and
provides an overview of the collected dataset.

2.1 Criticalities

When undertaking the effort of providing a measurement campaign
spanning over 1 year we faced several issues:

• inhabitants’ acceptance while householders self-selected for the
campaign, we experienced in one case a misuse in the measure-
ment platform which persisted after a full hardware replacement.
The platform worked correctly for several days sending the data
to the server but eventually went down again. While the house-
holder periodically restarted the gateway, the situation kept re-
peating until the householder deliberately dropped out the cam-
paign. Consequently, we decided to exclude the household from
the final dataset. A similar situation manifested in building 6 due
to a relocation, as well as in building 0 because the householders
decided to stop the campaign at the end of 2014 (1 year).

• network coverage as analyzed in [DTME14], coverage issues can
arise from the use of a Zigbee sensor network for energy manage-
ment. We mitigate this issue with a best-effort polling mechanism,
in which we poll all nodes within a 1 second time period and retri-
als are performed only when enough time is left. While normally
this works fine, error situations due to network coverage can cre-
ate consecutive invalid measurement values, which we mark as
“NULL” in the final dataset.

3



2.2 - Dataset overview

• node disconnection when polling sensor values, the specific li-
brary used can introduce timeouts in presence of node disconnec-
tions and error conditions. As previously explained in [MEE+14], a
mechanism was introduced to blacklist unplugged nodes. This has
the undesired effect of introducing consecutive “NULL” values in
the final dataset.

• server quota in two cases issues arised from the use of an external
server to store the dataset. The company server, being used for
other purposes, was out of reach for two days in conjunction with
a regional event (i.e., Lange Nacht der Forschung). In the second
case, we exceeded the given storage quota with the consequent
fail of uploading from the monitored households.

2.2 Dataset overview

The main outcome of the measurement campaign was the GREEND
dataset, the first 1 year long power consumption dataset for Austria and
Italy. The first version of the dataset released1 on October 31st 2014
contains roughly 10 GB of data stored as comma separated value (CSV)
files. The selection of consumption scenarios follows the analysis we
presented in [MEDT13, KME+14] and the project deliverable [LW13],
and in particular:

• House #0 a detached house with 2 floors in Spittal an der Drau
(AT). The residents are a retired couple, spending most of time at
home.

• House #1 an apartment with 1 floor in Klagenfurt (AT). The resi-
dents are a young couple, spending most of daylight time at work
during weekdays, mostly being at home in evenings and weekend.

• House #2 a detached house with 2 floors in Spittal an der Drau
(AT). The residents are a mature couple (1 housewife and 1 em-
ployed) and an employed adult son (28 years).

• House #3 a detached house with 2 floors in Klagenfurt (AT). The
residents are a mature couple (1 working part-time and 1 full time),
living with two young kids.

• House #4 an apartment with 2 floors in Udine (IT). The residents
are a young couple, spending most of daylight time at work during
weekdays, although being at home in evenings and weekend.

1http://sourceforge.net/projects/greend/files/
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2.2 - Dataset overview

• House #5 a detached house with 2 floors in Colloredo di Prato (IT).
The residents are a mature couple (1 housewife and 1 employed)
and an employed adult son (30 years).

• House #6 a terraced house with 3 floors in Udine, (IT). The res-
idents are a mature couple (1 working part-time and 1 full time),
living with two young children.

• House #7 a detached house with 2 floors in Basiliano (IT). The res-
idents are a mature couple, with one being retired and therefore
spending most of time at home.

In the following, the sites will be referred to with the notation S#, with #
being the number of the site. The device configurations for the selected
households are shown in Table 2.1.

At the time of writing 30 people downloaded the dataset and filled
the form available on the MONERGY project page. Fig.2.1 shows the
proportion of users for the way the got to know about the dataset.
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Figure 2.1: Proportion of users for the way they got to know about the
dataset.
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2.2 - Dataset overview

Table 2.1: Device configurations in the monitored households

House Devices

0

Coffee machine, washing machine, radio, water kettle,
fridge w/ freezer, dishwasher, kitchen lamp, TV, vacuum
cleaner

1

Fridge, dishwasher, microwave, water kettle, washing
machine, radio w/ amplifier, dryier, kitchenware (mixer
and fruit juicer), bedside light

2
TV, NAS, washing machine, drier, dishwasher, notebook,
kitchenware, coffee machine, bread machine

3

Entrance outlet, Dishwasher, water kettle, fridge w/o
freezer, washing machine, hairdrier, computer, coffee ma-
chine, TV

4

Total outlets, total lights, kitchen TV, living room TV,
fridge w/ freezer, electric oven, computer w/ scanner and
printer, washing machine, hood

5

Plasma TV, lamp, toaster, stove, iron, computer w/ scan-
ner and printer, LCD TV, washing machine, fridge w/
freezer

6

Total ground and first floor (including lights and outlets,
with whitegoods, air conditioner and TV), total garden
and shelter, total third floor.

7
TV w/ decoder, electric oven, dishwasher, hood, fridge w/
freezer, kitchen TV, ADSL modem, freezer, laptop w/ scan-
ner and printer

6



Section 3

Data Analysis

Energy monitoring campaigns return a large amount of data that needs
to be processed in order to extract the useful information, in general,
in statistical terms. Clearly, the higher the accuracy and the number of
sites being monitored, the larger the amount of collected data. It follows
the complexity of managing and processing the database, and, further,
of presenting statistical results that are of some interest.

Load monitoring is a research theme of great interest and several
monitoring campaigns were presented in the literature. A complete re-
view of the main results is provided in [MEE+14]. Monergy aims at
analyzing and improving user’s energy awareness as result of an exten-
sive measurement campaign carried out in CAR and FVG during 2014.
As compared to prior works, the MONERGY campaign is characterized
by a) a larger number of houses, b) a longer monitoring period and c)
a rather high sampling resolution. In detail, the number of houses is 8,
the monitoring period is expected to exceed one year, and the resolution
is 1 power measure per second. Furthermore, the campaign is intended
to understand the habits of people living in two regions, in order to pos-
sibly highlight similarities and differences.

This section presents the results of the statistical analysis performed
on the database of power measurements collected during the MONERGY
campaign. The study addresses the connectivity issues experienced dur-
ing the campaign, and the statistics of the power consumption of the
monitored loads. Furthermore, the analysis points out the contribution
of the monitored loads to the total energy consumption, infers the con-
sumption of the non-monitored loads, and discusses the user’s aware-
ness and the utility of the the time-slotted energy tariffs. The latter
studies are limited to the Italian database, for which the information
about the power consumption of the sites is provided by the monthly
bills.
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3.1 - Introduction to the Data Analysis

The remainder of this section is divided as follows. Section 3.1 intro-
duces the statistical analysis. Section 3.2 and 3.3 show the results for
CAR and FVG, respectively. Finally, Section 3.5 is dedicated to the anal-
ysis of bills of Italian sites, and to the study of the time slotted energy
tariffs, an Italian peculiarity enabled by the digital electric energy meter,
that allows for a variable energy pricing during different day times.

3.1 Introduction to the Data Analysis

The database of measurements is expected to exceed 2 billion acquisi-
tions in time, i.e., a huge amount of data that needs to be processed. We
aim to extract some useful information by means of statistical analysis
and, in this section, we detail the processing we performed to obtain the
results that we provide in Sections 3.2-3.3. In particular, we perform:

• the connectivity failure analysis;

• the power consumption analysis.

In the following sections, we describe the processing we adopted to ob-
tain the results from the raw measurement database.

3.1.1 Connectivity Failure Analysis

Connectivity limits are among the main impairments of commercial en-
ergy monitoring systems. A detailed review of main limitations is pro-
vided in [LW14a, DTME14]. Basically, [LW14a, DTME14] highlights that
current wireless and wireline technologies adopted by HEMS are not ad-
equate to fulfill the coverage requirements of Italian/Austrian residential
buildings. Now, beside the theoretical limits pointed out in [LW14a], it
is interesting to see how connectivity limits impact practically on the
collected data.

In this respect, we focus on the percentage of daytime a monitored
device is not accessible and we refer to the quantity as connectivity fail-
ure percentage, Q(s,d), where s = 0, . . . , 7 and d = 1, . . . , 9 denote the site
and the device, respectively. A device, and more specifically the smart
plug that monitors the device, could be not accessible for two reasons:
because it is physically disconnected from the power network, thus not
fed, or due to a connectivity failure. In both the cases, the MONERGY
gateway cannot assess the power consumption of the device and this
event represents an unsuccessful reading. The gateway associates a
NULL power consumption value to an unsuccessful reading. Thus, from

8



3.1 - Introduction to the Data Analysis

the analysis of NULLs of the collected dataset, we can infer the statis-
tics of unsuccessful readings. Subsequent NULL values form a NULL
period. The duration of a NULL period is given by the difference be-
tween the timestamp of the last and the first NULL measure. We aim
to distinguish between the connectivity failures and device disconnec-
tions. NULL periods associated to disconnections can last from minutes
to hours or even days because it is reasonable to assume that when a
device is disconnected by the user, it remains disconnected for quite a
long time. In the same way, it is reasonable to assume that connectivity
failures may last no longer than few minutes. Herein, we assume that
connectivity failures yield to NULL periods no longer than 5 minutes.

Table 3.1: Data extracted from the power measure in S4

timestamp device
01/02/14 #1 #2 #3 #4 #5 #6 #7 #8 #9

22:49:31 36.52 0.0 0.0 0.0 N N 2.17 0.0 0.0
22:49:32 38.67 0.0 0.0 N N N 0.0 0.0 0.0
22:49:33 38.67 N 0.0 N N 0.0 2.17 0.0 0.0
22:49:34 36.53 N 0.0 N N 0.0 0.0 0.0 N
22:49:35 38.67 N 0.0 N N 0.0 2.17 0.0 N
22:49:36 38.67 N 0.0 N N 0.0 0.0 0.0 N
22:49:37 36.53 N 0.0 N N 0.0 2.17 0.0 N
22:49:39 38.67 N N N 0.0 0.0 0.0 0.0 N
22:49:40 36.53 N N 0.0 0.0 0.0 2.17 0.0 N

Let us consider an example. Table 3.1 reports some measures ex-
tracted from the dataset collected in S4. The Table reports the power
consumption of the 9 monitored devices in an interval of 10 seconds.
NULLs are denoted with N. As it can be seen, the gateway experiences
difficulties assessing devices 2, 3, 4, 5, 6, and 9. In particular, device 4
shows a NULL period of about 7 seconds. Therefore, according to the
definition we proposed, device 4 experiences a connectivity failure of
about 7 seconds.

In the following, we compute Q(s,d) as the ratio between the sum
of NULL periods observed for device d of site s during the monitoring
interval T and the duration of T . We focus on the daily connectivity
failure percentage. Thus, T lasts approximately 1 day. Furthermore,
results are presented in percentage terms.
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3.1.2 Power Consumption Analysis

In principle, the measurement campaign is supposed to get a power
acquisition every second for an overall monitoring period of about one
year. This would yield to approximately 31.5 million measures per de-
vice. Non-idealities reduce the actual number of acquisitions, but the
latter keeps still high. In this respect, we synthesize the information by
studying the power consumption per hour, day and month basis.

Firstly, we need to manage NULL values. NULL readings are rep-
resentative of a disconnection of the device or a connectivity fault, as
detailed in Section 3.1.1. In the former case, it is reasonable to substi-
tute NULLs with the zero value, as if the device is disconnected there is
no power consumption. In the latter case, we substitute NULLs due to
connectivity faults with the last valid power measure before the NULL
interval. In fact, it is reasonable to assume that the device is still con-
suming power regardless connectivity problems. We distinguish NULL
periods due to connectivity faults or disconnections as described in Sec-
tion 3.1.1. Fig. 3.1 shows the actual measure, where NULLs are rep-
resented as -1, and the same measure where NULLs are processed. In
the figure, connectivity faults are less visible as they yield to NULL peri-
ods of extremely short duration. The monitoring system collects power
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Figure 3.1: Measured power before and after processing NULLs.

measures. From the power measure, we obtain the instantaneous en-
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3.2 - Data Analysis in CAR

ergy. Let us denote with t1, t2, and P1 the time stamp of two subsequent
measures and the power measure at the time instant t1, respectively.
The instantaneous energy Ei of the time interval [t1, t2] associated to the
power measure P1 is given by Ei = P1(t2 − t1). We measure the energy
in kWh and we always state the measurement interval, typically, one
minute.

We further condense the results and, for each site, we provide the
pie chart of the relative power consumption of the monitored devices
during a month period, and the histogram of the power consumption of
the monitored devices per month.

3.2 Data Analysis in CAR

We begin with the Austrian households, for which we firstly make an
analysis of connection failures and we later report the share over the
overall monitored consumption.

3.2.1 Null Analysis in CAR

Figs. 3.2-3.3 show the daily percentage of connectivity failures experi-
enced in sites S0, S1, S2, and S3. In site S0 the position of the gateway
is good enough to reach all nodes in a few hops. As visible in Fig. 3.2,
a higher connection failure percentage is noticed for the washing ma-
chine (basement), the vacuum cleaner (hall), as well as the kitchen lamp
and the water kettle (kitchen). The situation is more confused in site
S1, in which the gateway was placed in the lounge, in proximity of the
audio amplifier which nevertheless shows rather high connection failure
rate. The lounge is annexed to the small kitchen, in which the measuring
nodes are placed in less than 2 m distance each other. A third case is rep-
resented by the bathroom devices (i.e., washing machine and charger)
and the bedside lamp (bedroom), which are separated by 2 walls from
the main gateway. Site S2 provides a clearer scenario, with the gateway
being placed in the lounge, in proximity of the UPS and the computer.
The coffee machine and the dishwasher have a pretty low connection
failure rate, along with the washing machine (utility). The small cooking
appliance placed in the hall presents the highest connection failure, to-
gether with the spin dryer (utility) and the food processor (kitchen). In
site S3 the hub was placed in the lounge, in proximity of the computer
and the television, which can benefit from a close distance. This applies
also for the outlets connected to the kitchen devices, namely the fridge,
coffee machine, water kettle and dishwasher, which are mainly sepa-
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Figure 3.2: Connectivity failure analysis of site S0 (on the left) and site
S1 (on the right).
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Figure 3.3: Connectivity failure analysis of site S2 (on the left) and site
S3 (on the right).

rated from a wall. On the contrary, the outlets monitoring the washing
machine and the hair dryier are placed upstairs, which often determines
connection failures. To mitigate such situation, a monitoring outlet was
placed in the hallway, middle way between the bathroom and the rest of
the network.

3.2.2 Power Consumption Analysis in CAR

This section provides an analysis of energy consumption in sites S0, S1,
S2, S3. In particular, Figs. 3.4 to 3.7 report a pie chart and an histogram
for each site. The fridge is the most consuming device in all cases, de-
termining between the 40 and 47%. Moreover, consumption peaks are
observable for the fridge in the summer period. A remarkable share is
also given by the dryer, the dishwasher and the washing machine. The
scenario is similar in site S1, in which we also remark the presence of
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Figure 3.4: Power consumption plots of site S0.

multiple incandescent lightbulbs. The monitored bedside lamp alone
determines the 2% of the monitored consumption, which translates into
more than a kWh every month.
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Figure 3.5: Power consumption plots of site S1.

In site S2, a relevant share is accounted by the plasma TV, which de-
termines most of consumption in the household. In addition, a remark-
able contribution is given by the stand-by consumption resulting from
consumer electronics (i.e., uninterruptible power supply with network
attached storage, game console and personal computers). Site S3 (see
3.7) reports a similar situation, with the desktop computer accounting
for the 22% of the monitored consumption. As visible, this accounts for
more than 12 kWh every month.
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Figure 3.6: Power consumption plots of site S2.
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Figure 3.7: Power consumption plots of site S3.
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3.3 Data Analysis in FVG

We now focus on the Italian database and we provide the statistical re-
sults obtained from the collected data. The structure of the Section
reflects that of Section 3.2 in order to facilitate a clear and direct com-
parison of the results.

3.3.1 Null Analysis in FVG

We herein discuss the connectivity failures experienced during the mea-
surement campaign. Figs. 3.8-3.9 show the daily percentage of connec-
tivity failures experienced in sites S4, S5, S6, and S7.

In site S4, the position of the gateway is fine, as it represents a good
compromise in terms of distance between all devices. In fact, the per-
centage of connection failures is balanced among all devices. Only de-
vices in the kitchen exhibit a larger percentage of connection failures.
Namely, they are the LCD TV, the extractor hood and the fridge.
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Figure 3.8: Connectivity failure analysis of site S4 (on the left) and site
S5 (on the right).

In site S5, results point out difficulties in collecting data from the
plasma TV, the iron and the toaster. Such difficulties are expected since
these devices are placed far from the gateway. However, the position of
the gateway is constrained by the need of cabled Internet connection.
Fig. 3.10 shows the planimetry of site S5. The available outlets are
represented with blue squares. The site is square-shaped with a side
dimension of 10 meters. The gateway, the plasma TV and the toaster
are connected in the bedroom, in the living room and in the kitchen,
respectively. The iron is connected in the correspondence of plasma TV,
but on the lower floor. As it can be seen, the system is not able to en-
sure reliable communications with the smart plugs when several walls
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Figure 3.9: Connectivity failure analysis of site S6 (on the left) and site
S7 (on the right).

are inbetween. Differently to site S4, the remaining devices are well
connected as they exhibit low percentages of time connection failures.
Hence, in site S5, the position of the gateway does not ensure a balanced
percentage of connectivity failure time between devices. In sites S6 and

Su

gateway

toaster

plasma TV

Figure 3.10: Topology of Site S5.

S7, the percentage of connectivity failures drops significantly. This re-
sult is expected. In fact, in site S6, the smart plugs are all installed in the
main panel and they are all close to the gateway. In this site, the mon-
itoring campaign aims to collect the overall energy consumption rather
than the consumption of each single device. In site S7, we monitored 9
devices that are all closely arranged to the gateway, i.e., they are less
than 5 meters far away from the gateway, in most of cases with no walls
in between.

16



3.3 - Data Analysis in FVG

3.3.2 Power Consumption Analysis in FVG

This section provides a statistical analysis of the energy consumption
of the monitored devices in sites S4, S5 and S7. Site S6 is excluded
because, therein, the monitoring campaign targets only the total con-
sumption. Figs. 3.11 - 3.13 report a pie chart and an histogram plot
for each site. In site S4, the total outlet power consumption is excluded
from the analysis. The pie chart provides the relative energy consump-
tion of the monitored devices in September 2014 and it assumes 100%
to be the total monitored energy during the same month. The histogram
reports the monthly power consumption of the monitored devices. Thus,
the pie enables inferring the role that each device plays in the total en-
ergy consumption. The histogram highlights fluctuations in the energy
consumption / the use of the devices. Note that the pie reflects the bars
of the histogram in September.

In all cases, the fridge is the device responsible for the largest con-
sumption, namely, between 24% and 46% of the total monitored energy
consumption. Televisions have a large impact on the consumption as
well. Namely, they are responsible for 20%, 25%, and 39% of the total
monitored energy consumption of site S4, S5 and S7, respectively. The
values gather contributions from both the LCD and plasma TVs. How-
ever, we note that the largest contribution is, generally, from the plasma
TV. The reason is twofold. The energy consumption of the plasma TV is
approximately double that of LCD and, further, plasma TVs are installed
in the living room, thus they are switched for a longer time rather than
LCDs. This suggests to exchange the LCD TV with the plasma TV in or-
der to reduce the power consumption. The tip will be further addressed
in Section 4.4.
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Figure 3.11: Power consumption plots of site S4.

17



3.3 - Data Analysis in FVG

22%

3%

3%

33%

2%
< 1%

3%

10%

24%

 

 

Plasma TV

Halogen Lamp

Toaster

Stove

Iron

Laptop

LCD TV

Washing Machine

Fridge with Freezer

Mar Apr May Jun Jul Aug Sep Oct
0

10

20

30

40

50

60

70

Period

E
ne

rg
y 

(k
W

h)

 

 

Plasma TV

Halogen Lamp

Toaster

Stove

Iron

Laptop

LCD TV

Washing Machine

Fridge with Freezer

Figure 3.12: Power consumption plots of site S5.
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Figure 3.13: Power consumption plots of site S7.

To understand further the role of TVs, it is interesting to note that
in site S4 and S5 the TVs consume more than the washing machine,
namely, a device that is commonly recognized as energy-hungry. In fact,
the washing machine is responsible for only 5% and 10% of the moni-
tored energy consumption of September. Furthermore, in site S5, the
aggregate consumption given by the washing machine and the iron is
even lower than the energy consumption due to TVs.

Now, let us focus on monthly fluctuations. In site S4, the fridge and
the plasma TV show a regular behavior. We note a strong variation of
the power consumption of the electric oven, the PC, the LCD TV and the
washing machine, with a minimum during the warmest months, from
May to July. In site S5, the largest variation is due to the stove that,
as expected, is mostly used during the coldest months. The halogen
lamp reflects the variations of the daytime during different months and
it is limited in June and July. Finally, in site S7, energy consumption
variations can be observed, e.g., for the fridge or the electric oven, but
they cannot be related to some seasonal change as in other sites.
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Figure 3.14: Comparison between similar devices from different sites.

To enable a deeper comparison between sites, Fig. 3.14 gathers the
energy consumption of similar devices from different sites. Results refer
to the month of September. We target the washing machine, the TVs and
the computer. The energy consumption due to TVs is similar for sites S5
and S7, and it is interesting to note that in both sites there are elderly
users. In fact, Fig. 3.14 reveals a large spread of the washing machine
consumption, i.e., it is more than double in site S7 respect to S6. Finally,
we note the large consumption due to the PC in site S4. This is due to the
fact that, herein, the users spend part of the time working from home
and that the users are young and more familiar with the technology.
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3.4 Role of the Monitored Devices in FVG

The monitored loads are responsible for a minor part of the overall
power consumption, namely, about 40%, 25% and 16% of the total en-
ergy consumption in site S4, S5 and S7, respectively, assuming 100%
to be the total power consumption reported on the bill during the mon-
itoring period. This result is interesting and it can be related to a) the
connectivity limits of the monitoring platform and b) the low user aware-
ness about the energy consumption.

Connectivity limits reduce the set of devices that can be monitored.
For instance, in site S7, users aimed to monitor the washing machine,
but the coverage limitations of the monitoring platform make it unfeasi-
ble. Similarly, in site S5, two fridges were not reachable. In this case, a
dedicated platform was setup afterwards to get the consumption of only
these two devices. Results are reported in Section 4.4.3.

The user awareness impacts on the choice of the monitored loads.
Namely, we monitored the loads that the users believe to be the main
responsible for their energy consumption, i.e., we followed the user sug-
gestions in the choice of the loads. However, sometimes the monitored
loads were not as significant as expected. For instance, in Site S5, the
main concern was about the halogen lamp. In fact, results demonstrate
that the halogen lamp impacts for less than 1% of the total power con-
sumption.

As a final remark, we note that in Austria the information about the
monthly energy consumption is still not available. In this respect, we
speculate that, in Austria, the monitored energy consumption is even a
lower percentage of the total energy consumption because, differently
to Italy, the water heating system relies on electricity instead of gas
[MEDT13].

3.4.1 Inferring the Non-Monitored Loads

The analysis of the electricity bills reveals that the non-monitored con-
sumption is a substantial part of the total energy consumption. In this
respect, we aim to infer the loads responsible for the non-monitored
part of the total energy consumption. Firstly, let us focus on site S4.
Beside the monitored devices, an interview with the users revealed the
presence of the devices reported in Table 3.2. Furthermore, Table 3.2
reports the power consumption and the usage (in hours/month) of each
device. Note that these values are obtained from the information pro-
vided by users and not from actual measurements.
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Table 3.2: Inferring the non-monitored loads of site S4.

Description
Power Monthly

Usage Consumption Consumption
(hours/month) (kW) (kWh/month)

Iron 6 1 6
Hair drier 4 1 4

Vacuum cleaner 10 1 10
Microwave oven 4 1 4

ADSL modem - 0,033 23
Monergy platform - 0,011 8

We can derive the pie chart of the consumption considering the non-
monitored loads and assuming 100% to be the energy consumption re-
ported on the bill. We focus on a monitoring period of 1 month, i.e.,
May 2014. Fig. 3.15 shows the result. During the reference period, the
consumption of the non-monitored devices is about 67 kWh over a to-
tal energy consumption of 110 kWh. Among the non-monitored devices,
we note the large impact of the ADSL modem and even the MONERGY
gateway. A further 11% of consumption is due to devices that cannot be
clearly identified, as mobile phone chargers, etc.
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Figure 3.15: Pie chart of the energy consumption of site S4 considering
the non-monitored loads. The reference period is May 2014.
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As another example, let us focus on site S5. Table 3.3 reports the
non-monitored devices that users identified. The former two, i.e., the
fridge and the freezer were monitored with a dedicated platform to get
their actual power consumption. The remainder values were speculated
from the information provided by the users. Again, we derive the pie
chart of the energy consumption for the reference period of May 2014.
Fig. 3.16 shows the result.

Table 3.3: Inferring the non-monitored loads of site S5.

Description
Power Monthly

Usage Consumption Consumption
(hours/month) (kW) (kWh/month)

Fridge - 0,029 21
Freezer - 0,048 34
Modem - 0,033 23

Monergy gateway - 0,011 8
Hair drier 2 1 2

Vacuum cleaner 4 1 4
Tapis roulant 16 1 16
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Figure 3.16: Pie chart of the energy consumption of site 5 considering
the non-monitored loads. The reference period is May 2014.

During the reference period, the total power consumption is about
330 kWh, and the contribution due to the non-monitored devices is 239
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kWh. The plot highlights the large contribution of the fridge and the
freezer. The two devices are not monitored due to the connectivity lim-
itations. Furthermore, a large amount of energy consumption is due to
the lights and a water pump that is used to empty a catch basin. In
this respect, site S7 is characterized by a large deployment of inefficient
incadescent lamps. Also for site S7 it is interesting to note the large
amount of energy consumption due to the ADSL modem and the mon-
ergy gateway. The aggregate contribution is about 11% of the total, i.e.,
more than the consumption due to the Plasma TV and the LCD TV, or due
to the washing machine. In this respect, switching off the modem and
the gateway during night hours may provide some benefit, as discussed
in Section 4.4.4.
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3.5 Billing and Time Slotted Energy Tariffs

In this section we discuss current pricing mechanisms in CAR and FVG,
to analyze regional differences in terms of billing and investigate po-
tential room for savings. While in Carinthia there exists various ini-
tiatives towards the rollout of digital meters, a large scale installation
is still missing. This means that billing still takes place with electro-
mechanical meters, normally being checked once per year. As reported
in [MEDT13], a common solution to mitigate energy costs is to install
a night meter to supply water boilers. Let us select EKG Klagenfurt
and Kelag as examples. For simplicity we report final prices that al-
ready include taxes. The EKG Klagenfurt1 charges respectively 16,55
cent/kWh for day time (i.e., Strom Basis) and 12,677 cent/kWh for night
time (i.e., Strom Nacht). This already includes delivery costs, while the
basis energy cost (i.e., Arbeitspreis) would be respectively 8,748 cen-
t/kWh and 6,984 cent/kWh. Kelag (Kärntner Elektrizitäts AG)2 provides
various alternatives for household provisioning. In the Kelag-PUR3 plan
the basis energy cost is 8,484 cent/kWh under a 10.000 kWh/year con-
sumption, and 0,12 for each exceeding kWh. It is also remarkable that
the providers declare their power originating for 90.04 % from hydro-
electric and 5.11 % from wind (STW), and 100 % from hydroelectric
(Kelag).

On the contrary, in Italy the energy price depends on the energy
tariff, the quantity of energy that is consumed in one year and on the
time of the day. The time-slotted energy pricing is made possible by
the advanced smart grid functionalities provided by the digital meter.
In Italy, more than 32 million digital meters were installed by ENEL,
the main Italian distribution system operators (DSO). The digital meter
allows for the automatic meter reading, an accurate power measure,
and it enables a flexible energy pricing. Specifically, ENEL divides the
day/hours in two slots, namely:

• T1, from Monday to Friday between 8 AM and 7 PM,

• T2, during the remaining hours/days and during public holidays.

Within each time slot (T1, T2), the price of energy varies according to
four categories of consumption, i.e., C1, C2, C3 and C4. The price policy
is aimed to stimulate people consuming less. The higher the consump-
tion, the higher the price. Table 3.4 reports the energy consumption

1http://www.stw.at
2http://www.kelag.at/index.jsp
3http://haushalte.kelag.at/content/page_kelag_pur.jsp
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3.5 - Billing and Time Slotted Energy Tariffs

intervals associated to the four categories. Table 3.5 shows the cost of
the energy for each category/tariff and the single entries that contribute
to the total cost. Tables refer to the offer by ENEL for residential users
(contracts below 3kW)4, it provides only the components associated to
the power consumption, i.e., not the fixed costs related to the contract,
and it is updated to February 2015. As we can see, the energy price
is the only part of the total cost that depends on the time slot, i.e., T1
or T2. The difference between the energy price of the two time slots is
equal to 0,637 euro cent per kWh, that corresponds to a price reduction
that ranges between 2% (for C4) and 5% (for C1).

Table 3.4: Energy consumption categories.

Lower Bound Upper Bound
Category (kWh/year) (kWh/year)

C1 - 1800
C2 1801 2640
C3 2641 4440
C4 4441 -

Table 3.5: Cost of energy in Italy.

Energy Price of Delivering Grid
Price Fixed + Variable Services TOT

(Eur/kWh) (Eur/kWh) (Eur/kWh) (Eur/kWh)

T1

C1 0,06731 0,01381 0,046392 0,127512
C2 0,06731 0,01711 0,101512 0,185932
C3 0,06731 0,02066 0,165762 0,253732
C4 0,06731 0,02446 0,208432 0,300202

T2

C1 0,06094 0,01381 0,046392 0,121142
C2 0,06094 0,01711 0,101512 0,179562
C3 0,06094 0,02066 0,165762 0,247362
C4 0,06094 0,02446 0,208432 0,293832

3.5.1 Energy Consumption within the Monitored Houses

The monitored sites in Italy are an almost complete set of representa-
tive cases. From site S4 to site S7, they span categories C1, C3, and C4,
i.e., from the lowest to the maximum. The annual energy consumption,

4http://www.enel.it/it-IT/clienti/enel_servizio_elettrico/tariffe_per_

la_casa/tariffe_biorarie_per_la_casa/
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3.5 - Billing and Time Slotted Energy Tariffs

and the category of sites S4 to S7 are reported in Table 3.6. Site S7
consumes 3.74 times the energy of site S6. The power consumption of
the two sites corresponds to approximately 545 and 146 W/hour, respec-
tively. Thus, the database of the Monergy measures is representative of
quite different, though realistic, scenarios.

Table 3.6: Per-year consumption and price category of Italian sites.

Category
Energy Consumption

(kWh/year)

Site 4 C1 1277
Site 5 C4 4778
Site 6 C3 3349
Site 7 C3 4099
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Figure 3.17: Total energy consumption of Italian sites per month.

Fig. 3.17 compares the monthly consumption of the Italian sites. Re-
sults are reported in Euros, and numbers have been obtained multiply-
ing the monthly energy consumption reported in the bill by the energy
cost as detailed in Table 3.5. Thus, taxes and other costs not related
to the energy consumption are not accounted. The figure focuses on
the period from November 2013 to September 2014 that includes the
monitoring period considered in the analysis in Section 3.3. We note the
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3.5 - Billing and Time Slotted Energy Tariffs

following. First, the difference in terms of electricity expense between
site S4 and S5 is impressive. It settles always above 100 Eur/month.
Second, the monthly energy consumption, and thus electricity expense,
of sites S5-S7 exhibits a large fluctuation if compared to that of site S4.
Two remarkable peaks can be observed, approximately in December and
in between July and August. The former peak can be associated to the
Christmas holidays, during which users are supposed to stay more at
home. The latter peak can be related to the use of the air conditioning
systems and due to the summer holidays period as well. In site S5, the
difference between the largest peak and the lowest notch can be quan-
tified in about 120 Euro. Second, the energy consumption of site S4 is
rather regular because one of the users worked partly from home (tele-
working) and guests were present and spent part of their time at home
during the reference period. Therefore, there is no significant difference
for this site between holidays and working periods. Finally, the expense
of site S6 decreases significantly during August and September because
the users were not at home for quite long periods during these months.
This result suggests the interesting correlation between the energy con-
sumption and the occupancy. The topic is further addressed in Section
4.2.
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Figure 3.18: Time-slotted energy consumption of Italian sites per month.
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Let us investigate the energy consumption distribution over the time
slots. Fig. 3.18 shows the T1 and T2 electricity expense of each of the
four Italian sites. We note the following. First, the expense consump-
tion during T2 is higher. This result reveals that the most of the power
consumption is during the time slot T2, that corresponds to the evening
and night hours, holidays and week ends, i.e., when people are mostly
at home. Second, the variation of the electricity expense, and thus of
the power consumption, highlighted by Fig. 3.17 is mainly associated
with the energy consumption during T2. This result is expected as well.
In fact, Christmas holidays fall in T2 and justify the peak of December,
while air conditioning systems are mostly used during evening and night
hours, thus motivating the peak in between July and August.

Now, let us focus on the monitored devices. We focus on sites S4, S5
and S7. Figs. 3.19-3.21 report the consumption of the monitored devices
during the two time slots T1 and T2. Results are provided in percentage
terms, such that, for each device the sum of the energy consumed during
the time slots equals 100% and the plots are obtained considering the
period from March 2014 to October 2014.

In general, users are aware about the convenience provided by the
time-slotted energy tariff because the monitored devices operate mostly
during T2. The users of site S5 exploit better than others the time slot
T2. This conclusion is supported by the large spread between the energy
consumption percentage during T1 and T2. In particular, it can be seen
that the use of the washing machine (device #8) and the iron (device #5)
during T1 is limited to less than 20% of their total power consumption.
Clearly, some other devices cannot be scheduled during a specific time
slot. For instance, the toaster (device #3) is used during lunch time as
well. It follows the balanced consumption in T1 and T2.
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Figure 3.19: Usage percentage per device and time slots of site S4.
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Figure 3.20: Usage percentage per device and time slots of site S5.
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Figure 3.21: Usage percentage per device and time slots of site S7.
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Figure 3.22: Expense gain provided by shifting all the consumption to
T2 per month and site.

3.5.1.1 Can Time-Slotted Tariffs Shape Consumption?

As discussed in Section 3.5, current energy tariffs offer none (i.e., for
Austria) or very little (i.e., for Italy) incentive to promote load shed-
ding towards cheaper time slots. Although the user’s awareness of time-
slotted energy tariffs is quite high in Italy, the actual gain provided by
the use of the devices during the time slot T2 is minimal. For instance,
let us focus on site S4. Herein, the washing machine is mostly used
during time slot T1, as it can be noted from Fig. 3.19. During the moni-
tored period the energy consumption due to the washing machine of site
S4 in T1 and T2 is 19 kWh and 12 kWh, respectively. The total energy
cost caused by the washing machine is 3.9 Eur and shifting completely
the use of the appliance in T2 would yield savings for about 12 cents,
i.e., not enough to convince the users changing their habits. Now, ex-
tending the approach to the entire site consumption, we simulate the
expense gain provided by shifting the entire energy consumption to T2.
Fig. 3.22 shows the result per site and month. As it can be noted, with
the current pricing policy the gain is minimal and does not encourage
users to exploit the time-slotted energy tariff.

As deducible from the above presented analysis, the current tariff
plans offer either none or very little incentive to postpone energy us-
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age towards off-peak periods (e.g., night). In Austria the lower energy
price is motivated by the large availability of renewable energy sources,
especially hydroelectric, as well as the higher demand from electric de-
vices. As shown in [MEDT13], in Austria electric energy is being largely
exploited for cooking purposes as well as for water and space heating.
On the contrary, in Italy those functionalities are deployed using mostly
gas-powered devices. However, the need for new coordination mecha-
nisms, such as more dynamic pricing mechanisms, will become clearer
with the growing diffusion of electric vehicles.

3.5.2 Energy Consumption of the Monergy Platform

The Monergy HEMS consists of a gateway and 9 smart plugs [LW14b].
Table 3.7 reports the energy consumption of the whole HEMS. As we
can see, although the energy consumption in one hour is relatively small
(11.17 Wh), the total energy consumption per year reaches about 100
kWh. We can now compute the cost of the energy required by the Mon-
ergy HEMS. In particular, assuming that in one year there are about
3374 hours in T1 and 5386 in T2, we obtain the results reported in Table
3.8. As we can see, the cost ranges between 12 and 29 Eur depending
on the category of energy. Hence, for instance, the users of site S5 pay
approximately 29 Eur to keep the monitoring platform running.

Table 3.7: Power consumption of the Monergy HEMS.

Energy Total energy Total energy
consumption Number consumption consumption
single device of devices per month per year

(Wh) (kWh/month) (kWh/year)

Gateway 2,17 1 1,562 19,009
Plug 1 9 6,480 78,84

Total 8,042 97,849

Table 3.8: Cost of energy consumed by the Monergy HEMS.

Category
Cost
(Eur)

C1 12,09
C2 17,81
C3 24,44
C4 28,99
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Section 4

Exploitability of the results

The data analysis presented in the previous section is an excellent start-
ing point for a wide range of applications. This section presents some.
The aim is to deliver useful information of the user’s lifestyle, and for-
mulate tips that can influence positively the user habits.

Among the most interesting applications based on the energy con-
sumption analysis, herein we present the user energy profile, the user
occupancy, and we formulate some tips to save energy. The user energy
profile is the pattern of the energy consumed within a monitored site,
the user occupancy infers the presence of people from the analysis of
the aggregate power consumption. The suggestions consist of actions
that can be taken by users to limit the power consumption and thus to
save money. They are based on the analysis of the actual power con-
sumption of the sites monitored during the Monergy campaign.

Automated tools are necessary to actually extend the benefits gained
through the energy usage analysis. To this end, a system is proposed to
elaborate energy usage data and provide users with tailored feedback
and energy advice.

This chapter is divided as follows. Sections 4.1 and 4.2 deal with the
user’s energy profile and occupancy. Section 4.5 formulates policies for
an improved energy efficiency. Finally, Section 4.6 introduces Mjölnir, an
open solution for energy advice that implements the automated analysis
of the measured data.

4.1 User Energy Profile

Data gathered during the monitoring campaign can be used to derive
the whole energy profile, namely, the pattern of the energy consumed
by each of the monitored houses during the day. The derivation of the
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4.1 - User Energy Profile

energy profiles requires the knowledge of the total energy consumption
at regular interval. Therefore, in our case, it can be computed for sites
S4 and S6. In site S4, the total consumption is obtained aggregating the
consumption due to outlets and lights. In site S6, the total consumption
is obtained aggregating the consumption from the meters of the three
parts of the house. Energy profiles can be used for different ends, that
is:

• to detect unexpected energy waste;

• to predict the energy demand;

• to make social studies on the habits of inhabitants.

Fig. 4.1 shows the cumulative distribution function (CDF) of the total
energy consumption of site S4. In particular, sub-figure (a) is related to
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Figure 4.1: CDF of the energy consumption of site S4 during week days
(on the left) and weekend days (on the right).

the weekdays (WDs), and the sub-figure (b) to the weekend days (WEs).
Weekdays and weekend days have been treated separately since the en-
ergy demand may be different within these two periods due to different
habits of the users, e.g., for working reasons. CDFs are derived using
the data measured from March to October 2014.

Fig. 4.4 shows the 95th percentiles of the total energy consumption
for site S6 during WDs and WEs. The energy demand is lower or equal
to the shown values with probability equal to 0.95. As expected, the en-
ergy demand is different during WDs and WEs. In particular, since the
users of site S4 work during the week, we see that the corresponding
energy demand is lower during the week days. Nevertheless, the peaks
of energy consumption during the weekdays between 8.00 AM (when
the couple leave home) and 6.00 PM (when they come back from work)
are due to the presence of hosts during the months of June, July and
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Figure 4.2: 95% percentile of the total consumption of site S4 during
week days (on top) and weekend days (on bottom).

October. Another interesting observation is that after 6.00 PM the en-
ergy demand is very similar during weekends and weekdays. Figs. 4.3
and 4.4 respectively show the CDF and the 95th percentiles of the to-
tal energy consumption for site S6. Looking at Fig. 4.4, we notice that
either during the WDs or the WEs consumption are high, this suggests
that people are at home also during the WDs. Although, it is out of the
scope of the present analysis, we want to notice that by looking at the
95th percentiles, it is possible to derive some habits of the users. In
particular, we can guess the time they wake up and go to sleep. In site
S4 (see Fig. 4.2) the young couple seems to wake-up at around 6.30
AM and go to sleep after 11.00 PM, furthermore, some small peaks are
present during the nights of the WEs, these are due to the lights that
are switched on when people come back home from outside. In site S6,
people seem to wake up at 5.30 AM during WDs and around 6.00 AM
during WEs, whereas they go to sleep at around 10.00 PM.
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Figure 4.3: CDF of the energy consumption of site S6 during week days
(on the left) and weekend days (on the right).
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Figure 4.4: 95% percentile of the total consumption of site S6 during
week days (on top) and weekend days (on bottom).
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4.2 Inferring Occupancy

Occupancy detection is the problem of inferring presence of people in
environments. Many different approaches have been considered in the
literature: motion detection, doors opening, use of acoustic sensors
and/or cameras, use of global positioning system (GPS) and localization
systems through smart phones. Nevertheless, only a few works propose
to use energy consumption data to develop occupancy detection tech-
niques [CBS+13]. To this end, the assessment of occupancy detection
requires a suitable dataset, offering either an aggregated or a disaggre-
gated power draw, along with a description of consumption scenarios.
In particular, the activity of user-driven devices is relevant to infer the
presence in the environment. In this respect, note that the operations of
such devices can be postponed biasing the presence detection.

A simple approach based on the use of energy consumption data
to detect occupancy was presented in [CBS+13]. Therein, the au-
thors developed an algorithm called non-intrusive occupancy monitor-
ing (NIOM). In particular, NIOM guesses the presence of people at home
by comparing the average, the variance and the maximum value of the
current energy consumption with threshold values. The threshold val-
ues are computed during inactivity periods, namely when the activity
of residents does not add energy consumption to the baseline consump-
tion, e.g., the consumption of devices such as fridge, heat, ventilation
and air conditioning (HVAC) systems etc. Accordingly, the thresholds
are computed every night when people are supposed to sleep. As both
power values and threshold values are computed over time slots of fixed
duration, the duration of the slot is an important parameter affecting
the estimation. Although occupancy detection through energy consump-
tion observation is a cheap and non-intrusive solution, it is shown being
rather inaccurate in determining the occupancy during periods of in-
activity. In order to give an example, we focus on site S4 and the S6.
We chose these scenarios because we have measured the total energy
consumption, which allows for better estimating the baseline during in-
activity periods. For site S4, we consider eight months of measurements
(March - October 2014), while for site S6, we consider four months (July
- October 2014), we then apply the NIOM algorithm as described in
[CBS+13]. The time slot duration is chosen equal to 15 minutes. As done
in the previous section, we consider two cases, the WDs and the WEs.
The baseline, within which the baseline threshold values are computed,
was chosen at night between midnight and 5.00 AM. Fig. 4.5, on the left,
reports the occupancy obtained for site S4 applying the NIOM algorithm
to the measurements of the weekday 27 March and the weekend day 12
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Figure 4.5: Daily occupation (on the left) and CDF of the occupation
probability (on the right) for site S4. The Daily occupation refers to 27
March (weekday) and 12 July 2014 (weekend day).

July. The right plot of Fig. 4.5 shows the probability of occupancy ob-
tained for WDs and WEs. Firstly, we note that, as expected, the results
obtained between midnight and 5.00 AM do not indicate any activity.
Secondly, we note a good agreement between the derived probability
of occupancy and the habits of residents. Residents stated that, during
WDs, they usually wake up at 6.45 AM, they leave around 8.00 AM to go
to work and they are back home around 6.00 PM. During WEs residents
tend to spend more time at home during the day. Fig. 4.6 shows the
results for site S6 where similar considerations can be done.
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Figure 4.6: Daily occupation (on the left) and CDF of the occupation
probability (on the right) for site S6. The Daily occupation refers to 25
August (weekday) and 20 July 2014 (weekend day).
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4.3 Modeling individual appliance usage

Appliance usage modeling is the problem of describing the usage of in-
dividual devices, given a log stream of status changes. This can be
achieved through different approaches, such as association rule min-
ing [KKK12], ANN [AUF02], episode-generating hidden Markov model
(EGH) [TTTCR13] and Bayesian networks [HPJ10, CVD+10]. The intu-
ition is that starting of user-driven devices tends to regular patterns
which can be modeled. The main reason to model device start is the
possibility to predict users’ necessities, activities and occupancy. This
is necessary for better scheduling resources beforehand as well as sug-
gesting best times to run certain devices. As we previously shown in
[MEE+14], this can be done using statistical and machine learning mod-
els. In this section we analyze the appliance starting probability of user-
driven devices, as extracted from the GREEND dataset on hourly inter-
vals.

4.3.1 Appliance usage in site S2 and S3

We focus here on site S2 in the period between February 15th and Octo-
ber 28th 2014. Fig. 4.7 shows the power readings on Febrary 22nd 2014.
The main reason for selecting S2 as case study is the overall amount of
usage events, which is higher for the setting of the retired couple. Based
on the device operation, we specify device-specific thresholds (Table 4.1)
and extract starting events1. The processed starting events can now be

Table 4.1: Selected thresholds for site S2

Device Threshold [W]

Plasma 300
NAS, Console, PC 50
Washing machine 1000

spin dryer 1600
dishwasher 1000
notebooks 40

food processor 40
coffee machine 800

small cooking appliance 120

grouped by hour and day type (i.e., weekdays, saturdays and sundays),

1http://sourceforge.net/projects/monergy/files/Gateway/processor_v2.py/
download
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4.3 - Modeling individual appliance usage

and used to compute a starting probability. In detail, we count the num-
ber of starting events for each hour interval and we normalize it to the
total for the dataset.
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4.3 - Modeling individual appliance usage

Fig. 4.8 shows the starting probability for the last 4 monitored de-
vices in site S2: notebooks, the food processor, the coffee machine and
the small cooking machine (i.e., bread machine). As for site S3 concern-
ing the family with young kids, Table 4.2 reports the thresholds used for
event detection. As visible in Fig. 4.9, the vacuum cleaner, the washing

Table 4.2: Selected thresholds for site S3

Device Threshold [W]

Vacuum cleaner 1000
Dishwasher 1000
Water kettle 1600

Fridge 400
Washing machine 1000

Hair dryer 900
PC 50

coffee machine 800
TV 40

machine and the water kettle show rather regular usage patterns. On
the contrary, the fridge is being used every hour, thus determining the
distribution in Fig. 4.9d.

4.3.2 Modeling appliance usage

As seen in the previous Sect. 4.3.1, device starting events can be pro-
cessed to build an expectation of usage based on event frequency. While
this intuition provides a useful reference showing the distribution of
starting events, we did not consider the dependency between usage
events, such as operating multiple times the device in different peri-
ods of the day. Techniques for the automatic learning of usage models
are thus necessary. In this section we build and assess various appliance
usage models. For the purpose, we implemented and publicly released
the appliance usage model manager2, a graphical tool that can handle
various models: i) artificial neural networks, ii) bayesian networks and
iii) support vector machines [ME14]. The tool can extract and visualize
the models, as well as interact with simulation tools via a TCP socket.

As previously shown, the coffee machine of both S2 and S3 repre-
sents a valid candidate to give an example. We start by modeling the
problem as an ANN, using an input for each hour of the day and type of
day (i.e., weekday, saturday and sunday). The network was trained us-

2https://sourceforge.net/projects/umma/
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Figure 4.8: Starting probability of selected devices for site S2
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Figure 4.9: Starting probability of selected devices for site S3

43



4.3 - Modeling individual appliance usage

Figure 4.10: The main GUI of the appliance usage model manager tool

ing backpropagation limited to 1000 iterations for performance reasons.
Fig. 4.11 and 4.11 report the output of the model respectively for S2 and
S3, given different day type and hour. As visible, the number of opera-
tions in S3 is lower than in S2 (i.e., 99 against 986 events), which also
complicates the learning of a usage model, being the number of inactiv-
ity much higher than usages. For site S3 the learning of neural network
can easily minimize the input/output error and terminate quicklier.
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Figure 4.11: The usage model of the coffee machine in S2 using an ANN

We further model the problem as a Bayesian Network, as in Fig. 4.13.
The model allows for predicting device starting while also considering
previously concluded operations which started in the interval. For sim-
plicity we omit in this example the month information. The network
is then trained using expectation maximization (EM), and exact infer-
ence is performed using the junction tree (JT) algorithm. The histograms
shown in Fig.4.14 agree with the ones previously shown in Sect. 4.3.1.
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Figure 4.14: Starting probability of selected devices for site S2
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4.4 - Tips to Save Energy

4.4 Tips to Save Energy

The main outcome the users expect from the monitoring campaign is a
set of suggestions they can implement to reduce the energy consumption
and, ultimately, to save money. This section presents some tips derived
from the analysis of the collected data and quantifies the amount of sav-
ings provided by the adoption of each specific action in the sites being
monitored. The analysis reveals that savings up to 34% are possible
without significant impact on the user lifestyle.

4.4.1 Tip #1: Flip the Plasma TV with an LCD TV

When present, the plasma TV is the most deployed by users. It is nor-
mally placed in the living room, while LCD TVs are confined to other
rooms, as the kitchen or bedrooms. However, plasma consumes much
more than LCD. Fig. 4.15 show the energy consumption profile of the
plasma (42”) and the LCD TV (37”) of respectively site S4 and S5 during
an acquisition of one day. As it can be noted, the plasma TV consumes
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Figure 4.15: Energy consumption comparison of the plasma and the LCD
TVs of site S4 (on top) and site S5 (on bottom).

between two and three times the energy of the LCD TV. While the de-
vices have different size, the relationship will also hold for TV of the
same size. Therefore, it is reasonable to exchange the LCD with the
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4.4 - Tips to Save Energy

plasma TV in order to get significant energy savings. However, other
technological differences, such as different resolution and distance from
the device might affect this choice. Let us try to quantify savings. Ac-
cording to the values in Fig. 4.15, we approximate the hourly energy
consumption, i.e., in one hour of activity, of the plasma and LCD TV
be 200 Wh/hour and 80 Wh/hour, respectively. Hence, we can obtain the
hours of activity of such devices as the ratio between the total consumed
energy and the hourly energy consumption. In site S4, we estimate 421
and 148 working hours for the plasma TV and the LCD TV, respectively.
In site S5, we estimate 771 and 404 working hours. Now, let us flip
the working hours of the plasma and the LCD TVs, i.e., we simulate a
position exchange of the devices. We compute the new overall energy
consumption and results reveal that the new energy consumption is 34%
and 23% lower than the actual one of site S4 and S5, respectively. We
remark that this has been made possible simply by flipping the position
of the devices, without the need of substituting them with new models.

4.4.2 Tip #2: Switch off the stand-by devices

Standby mode is responsible for a large waste of energy. In standby, the
device is not completely switched off and absorbs power. However, it
is not performing its main functionality. Several reasons motivate the
standby mode. Among these, to let the device be remotely controllable
or to let it be ready for a prompt switch on under user request. For
instance, the digital video player (DVD) player, the radio, the TVs, or
the air conditioning system need to be fed to receive the switch on com-
mand from the remote controller. Similarly, the computers need to keep
refreshed the random access memory (RAM) for a prompt reboot after
a suspension. Also mobile phone chargers absorb power even if they
are not used, but connected to the outlet because their internal AC/DC
circuitry is fed. The power absorbed by devices in standby mode may be
as low as some mW, but it can even exceed tens of W3. In this respect,
it is important to understand that even a power consumption of 1 W can
lead to a considerable waste of energy if observed over a long period of
time. To quantify further the waste due to standby, let us consider an
example extracted from one of the measurement sites.

The analysis reveals that, in site S7, the television and the decoder
are always switched on and in stand-by mode. Fig. 4.16 shows the
measured energy consumption during subsequent days. The power con-
sumption is approximately 6.57 W that yields to an annual energy con-

3Lawrence Berkeley National Laboratory, “Standby Power Summary Table”, online:
http://standby.lbl.gov/summary-table.html
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Figure 4.16: Measured energy absorbed by the TV + decoder of site S7.
The mean value is also shown.

sumption of 57.57 kWh, or, equivalently 1.4% of the total energy con-
sumption of site S7 (4099 kWh). Now, we can assume that 10 is a rea-
sonable number of devices per site that are in standby mode all over
the year. Among these, the washing machine, the air conditioning sys-
tem, the TVs. Therefore, we conclude that about 14% of the total energy
consumption is wasted due to standby.

4.4.3 Tip #3: Substitute the old devices

Old appliances are inefficient as they implement rarely strategies for
the reduction of the energy wastes. In addition, degradation due to
utilization yields to further wastes that worsen the problem. Therefore,
substituting the appliances with new ones becomes an interesting option
since energy savings would motivate the investment.

In this respect, an application example is provided by two old fridges
installed in site S5. The devices do not belong to the set of monitored
appliances due to the coverage limitations of the monitoring platform.
They were not reachable. Thus, we measured their consumption with
a dedicated monitoring platform installed for a week on site, according
to the desire of the users. Results revealed an energy consumption of
about 47.7 Wh and 28.6 Wh, for a total amount of 56 kWh per month
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4.4 - Tips to Save Energy

and 668 kWh per year. This number could be reduced to below 258
kWh per year by replacing the two freezers with two freezers belonging
to A+++ energy class4. The resulting energy saving would be equal
to 34 kWh per month that corresponds to the 11% of the total energy
consumption of site S5 as reported in Table 3.6. Furthermore, we note
that, substituting the fridges helps moving the category of site S5 from
C4 (the most expansive) to C3, with a significant reduction of the energy
cost.
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Figure 4.17: Power consumption of an old fridge and an old freezer in
site S5 during a time interval of three hours.

4.4.4 Tip #4: Switch off the ADSL modem when unused

The asymmetric digital subscriber line (ADSL) modem is switched on all
the day, but users surf the Internet for a few hours a day. Now, the power
consumption of an ADSL modem with WiFi and Ethernet functionalities
is about 30 W 5 that means approximately 263 kWh per year. Let us
assume to switch on the modem for about 3 hours per day and during
the entire weekend. In this case, the total power consumption would be

4The computation of energy consumption given by A+++ freezer has been made by
assuming that the energy efficiency index (EEI) is equal to 22, the volume of the freezer
is equal to 302 liters, and the appliance category is the 7.

5http://www.downloads.netgear.com/files/GDC/DGND3700V2/DGND3700v2_UM_05June2014.pdf
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98 kWh per year, i.e., about 37% of the energy consumed if the device
is always switched on. Clearly, this tip applies to all cases where the
Internet connection is not required for other applications/needs, such
as VoIP.

4.5 Recommendations to increase efficiency

The analysis carried out in the previous section provided several poten-
tial ways of improving energy efficiency, including:

1. Lighting replacing incandescent bulbs with energy saving ones;

2. Device diagnostics replacing old appliances with more energy
efficient ones, expecially regarding white goods but also involving
consumer electronics (e.g., LCD/light emitting diode (LED) TV in
place of a plasma TV);

3. Shedding of standby losses switching off consumer-electronic
devices when people are not likely to be at home, such as ADSL
modems and TVs;

4. Device shifting shifting of particularly energy demanding devices
to off-peak periods, in order to operate loads in cheaper time peri-
ods. This includes both deferral and preference of efficient devices
to energy demanding ones, as shown in tip #1.

While these policies have a general validity, the benefits of the data anal-
ysis is limited to the users involved in the campaign.

4.6 Automating the analysis

To extend the energy efficiency policies to the region of CAR and FVG,
we implemented an open-source energy advisor framework. The system
is able to collect energy usage information, autonomously analyze it and
provide users with tailored feedback to improve their efficiency.

4.6.1 The Mjölnir framework

Mjölnir is a web-based energy management system capable of visualiz-
ing energy consumption and production information.

Available data sources are: i) aggregated building production and
consumption information, ii) power readings from selected circuits and
devices and iii) energy usage events. The current version 0.2 Mjölnir
provides:
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4.6 - Automating the analysis

Figure 4.18: The Mjölnir interface 0.2

• Credit-based device management Each monitored device is as-
sociated to a credit, which is decreased upon device usage [ME13].
This provides a fine-grained consumption resolution, providing an
understanding of the cost of operating each device.

• Device metadata To determine the applicability of certain anal-
yses, each device is described through the following attributes:
type (e.g., fridge), mobility and room, curtailability, autonomy (i.e.,
user control) and stand-by mode. In particular, the room and de-
vice metadata are based on the large vocabulary introduced in
[KK14]. This makes the integration with analysis frameworks shar-
ing this data model (e.g., non-intrusive load monitoring (NILM)
toolkit [BKP+14]) possible.

• Tariff-based energy data analysis The analysis tool is based on
a price model, which is expressed as energy tariffs.

• Modular interface The interface exploits Bootstrap6 and can be
seamlessy visualised on both mobile terminals (e.g., smartphones
and tablets) and computers. Moreover, the framework is organized
on pages and cells and based on the concept of widget, which pro-
vides both modularity and flexibility to the interface structure. A
widget can provide various features, such as displaying charts or
forecasting energy consumption, and can be placed in those cells.
This also allows users to progressively adapt the feedback system

6http://getbootstrap.com
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in order to display energy information in a language that is mean-
ingful to them: by placing things next to each other and only con-
centrate on interesting matters.

• Social features and public profile page Social features allow
users for sharing their performance with their peers, including so-
cial networks and blogs. To this end, we distinguish public and
private pages of users. A public page is meant to be the public
user’s profile. Also, actual and estimated energy consumption and
production for the current day is provided as a summary that can
be embedded in external web pages (e.g., blogs).

Among available widgets are:

• Production/Consumption report showing daily energy informa-
tion over the last month;

• Cost report showing daily energy cost over the last month;

• Production/Consumption gauge showing energy use for the
current day;

• Energy estimation showing an estimation of energy production
and consumption for the current day, as based on the previous
days;

• Device itemization showing the consumption and cost per device,
over the current day, week and year;

• Timeline showing energy usage events per device, and described
by their consumption and cost;

• Energy advisor returning messages based on usage behavior in
order to increase efficiency;

• Appliance usage showing the usage models of user-driven de-
vices, as in Fig. 4.8 and 4.9.

The framework is open-source and available as SourceForge project7.
We refer to the project documentation for further information on func-
tionalities and setup.

7http://mjoelnir.sourceforge.net
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4.6.2 Energy efficiency policies for the regions

The recommendations formulated in Sect. 4.5 were implemented in the
Energy Advisor widget as follows:

• Device diagnostics advices replacement of appliances and it is
thus useful to improve non-user-driven devices (e.g., fridge)

1. Select non-user-driven devices

2. Compute average consumption for each device type for all
users8

3. Retrieve devices whose average consumption is higher than
the one for the device type of a certain threshold τ1 (e.g., 30%)
and suggest replacement

• Device shifting

1. Select user-driven devices

2. Rank devices by their average consumption (according to con-
sumption events)

3. Rank tariffs by cost in order to select the best and worst tariffs
available

4. Suggest to use the device in the cheapest tariff and report the
potential savings computed as s = (l · t) − (l · c), respectively
with l average consumption for the device, c and t cheapest
and most espensive energy tariffs.

• Shedding of standby losses suggests to switch-off devices in
standby mode (such as displays, decoders, DVD players, battery
chargers without load, air-conditioning systems) in periods of not
use (e.g., night). This tip can be always returned for devices with
a standby mode, although higher effectiveness can be achieved by
exploiting an occupancy model.

• Device curtailment and moderate usage

1. Select user-driven devices;

2. Rank devices by their positive deviation from the average
number of usage for the device type and cost;

3. Suggest to reduce the amount of times the device is being
used and compute the yearly savings as extrapolated from the
running cost spent for the current month;

8Can be done periodically and cached in a separate location
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Section 5

Conclusions

This deliverable has presented the work carried out within the WP5 of
the Monergy project.

The GREEND dataset resulting from a year-long measurement cam-
paign offers detailed power usage information that can be used to assess
energy management systems before their deployment. On one hand, we
have reported a description of issues arising from such a long term mea-
surement campaign, along with potential ways to tackle those problems.
The dataset has been then used within WP5 to derive energy usage pro-
file of inhabitants of Carinthia and Friuli Venezia Giulia. The main out-
come has been the analysis of commonalities and differences and the
formulation of practical recommendations to save energy. In particular,
the analysis has revealed that savings up to 34% are possible without
significant impact on the user lifestyle.

Furthermore, our analysis is beneficial to designers of home energy
management systems, as it provides an understanding of energy usage
practices that can be exploited for the design of the next-generation of
HEMS. In particular, to solve the connectivity issues and to size the
system in order to be able to monitor all the relevant loads.

Finally, to extend the benefits of the data analysis and the formulated
policies, we have introduced a web-based energy management system
and we have released it for open use. The Mjölnir open-source frame-
work provides a working system able to automatically analyze energy
usage data and accordingly return tailored feedback. We have engaged
with the initialization of such a project and we expect this tool to play an
important role for researchers working with energy management sys-
tems.
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